
Store data in and retrieve

data from collections

1

Gulnaz Zhomartkyzy

D. Serikbayev EKSTU

All arrays inherit from the base class System.Array.

The two most commonly used properties of an array are –

Length and Rank.

The Rank property - indicates the number of dimension in the array.

These properties are helpful when determining the bounds of an array when

doing for or while loops.

The Clone - method is used to make a shallow copy of the array, while

the CopyTo method copies the elements of the array to another array.

Arrays

WORKING WITH DATA COLLECTIONS

2

An array is the most basic type used to store a set of data.

An array contains elements, and they are referenced by their

index using square brackets, [].

The following example creates a single dimensional array

of integers:

Arrays

int[] myArray = new int[6];
myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;
myArray[3] = 4;
myArray[4] = 5;
myArray[5] = 6;

333

Two-dimensional array

int[,] mySet2 = new int[3, 2];
mySet2[0, 0] = 1;
mySet2[0, 1] = 2;
mySet2[1, 0] = 3;
mySet2[1, 1] = 4;
mySet2[2, 0] = 5;
mySet2[2, 1] = 6;

Two-dimensional array

4

Collections

Collections is a generic term for special classes in C# that are more

flexible than arrays. These classes enable you to dynamically add or

subtract elements after they have been initialized, associate keys for

elements, automatically sort the elements, and allows for elements to be

different types or type specific.

Some of the classes are List, List<T>, Dictionary, Dictionary<T>,

Stack, and Queue. These classes all have slightly different functionality

and are explained in detail in next few sections.

The namespaces for the collection classes are System.Collections,

System.Collections.Generic

5

The System.Collections namespace contains classes for

use when you do not have the same type of elements stored

within the collection. These collections can mix int, string,

classes, or structs within the same collection. Table 9-2 lists

the types in the System.Collections namespace. Each of

these types is discussed in more detail in the following

sections.

System.Collections

6

System.Collections

COLLECTION
NAME

DESCRIPTION

ArrayList Creates a collection whose size is dynamic and can

contain any type of object

HashTable Creates a collection with a key\value pair whose size

is dynamic and contains any type of object

Queue Creates a collection that is first-in-first-out for

processing

SortedList Creates a collection of key\value pairs whose

elements are sorted by the key value

Stack Creates a collection that is last-in-first-out for

processing

Table1 – lists the types in the System.Collections namespace

7

ArrayList

An ArrayList is a class that enables you to dynamically add or remove

elements to the array. This is different from the simple array, which does

not enable you to change the dimensions after it is initialized. The

ArrayList class is useful when you don’t know the number of elements at

the time of creation and also if you want to store different types of data in

the array. In the Array examples, all elements of the mySet array had to be

an int. An ArrayList has an Add method that takes an object as a parameter

and enables you to store any type of object. The following code creates an

ArrayList object and adds three elements of different types to the

ArrayList:

ArrayList myList = new ArrayList();

myList.Add(1);

myList.Add("hello world");

myList.Add(new DateTime(2012, 01, 01));

8

TABLE 2 : Common System Array Properties

ArrayList

PROPERTY DESCRIPTION

Capacity Gets or sets the number of elements in

the ArrayList

Count Gets the number of actual elements in

the ArrayList

Item Gets or sets the element at the

specified index

9

TABLE 3: Common System Array Methods

ArrayList

METhOD DESCRIPTION

Add Adds an element at the end of the ArrayList

AddRange Adds multiple elements at the end of the ArrayList

BinarySearch Searches the sorted ArrayList for an element using
the default com-parer and returns the index of
the element

Clear Removes all the elements from the ArrayList

Contains Determines if an element is in the ArrayList

CopyTo Copies the ArrayList to a compatible one-
dimensional array

IndexOf Searches the ArrayList and returns the index of
the first occurrence within the ArrayList

10

TABLE 3: Common System Array Methods

ArrayList

METHOD DESCRIPTION

Insert Inserts an element into the ArrayList at a specific

index

Remove ARemoves an element from the ArrayList

RemoveAt Removes an element from the ArrayList by index

Reverse Reverses the order of the elements in the

ArrayList

Sort Sort the elements in the ArrayList

11

ArrayList

ArrayList myList = new ArrayList();
myList.Add(4);
myList.Add(1);
myList.Add(5);
myList.Add(3);
myList.Add(2);
myList.Sort();
foreach (int i in myList)
{
Console.WriteLine(i.ToString());

}

Example for a simple sorting exercise:

12

class MyObject
{

public int ID { get; set; }
}

ArrayList

ArrayList myList = new ArrayList();
myList.Add(new MyObject() { ID = 4 });
myList.Add(new MyObject() { ID = 1 });
myList.Add(new MyObject() { ID = 5 });
myList.Add(new MyObject() { ID = 3 });
myList.Add(new MyObject() { ID = 2 });
myList.Sort();
foreach (MyObject i in myList)
{

Console.WriteLine(i.ID.ToString());
}

13

class MyObject : IComparable
{ public int ID { get; set; }

public int CompareTo(object obj)
{ MyObject obj1 = obj as MyObject;

return this.ID.CompareTo(obj1.ID);
}

}

ArrayList

ArrayList myList = new ArrayList();
myList.Add(new MyObject() { ID = 4 });
myList.Add(new MyObject() { ID = 1 });
myList.Add(new MyObject() { ID = 5 });
myList.Add(new MyObject() { ID = 3 });
myList.Add(new MyObject() { ID = 2 });
myList.Sort();
foreach (MyObject i in myList)
{

Console.WriteLine(i.ID.ToString());
}

14

ArrayList

ArrayList myList = new ArrayList();
myList.Add(new MyObject() { ID = 4 });
myList.Add(new MyObject() { ID = 1 });
myList.Add(new MyObject() { ID = 5 });
myList.Add(new MyObject() { ID = 3 });
myList.Add(new MyObject() { ID = 2 });
myList.Sort();
int foundIndex = myList.BinarySearch(new MyObject() { ID = 4 });
if (foundIndex >= 0)
{

Console.WriteLine(((MyObject)myList[foundIndex]).ID.ToString());
}
else
{ Console.WriteLine("Element not found"); }

The ability to search the array

15

Hashtable
A Hashtable enables you to store a key\value pair of any type of

object. The data is stored accord-ing to the hash code of the key and can be

accessed by the key rather than the index of the element. The following

sample creates a Hashtable and stores three elements with different keys.

You can then reference the elements in the Hashtable by its key.

Hashtable myHashtable = new Hashtable();
myHashtable.Add(1, "one");
myHashtable.Add("two", 2);
myHashtable.Add(3, "three");
Console.WriteLine(myHashtable[1].ToString());
Console.WriteLine(myHashtable["two"].ToString());
Console.WriteLine(myHashtable[3].ToString());

The preceding code will produce the following output:

one

2

three

16

Queue
A Queue is a first-in-first-out collection. Queues can be useful

when you need to store data in a specific order for sequential

processing. The following code will create a Queue, add three elements,

remove each element, and print its value to the Output window:

Queue myQueue = new Queue();
myQueue.Enqueue("first");
myQueue.Enqueue("second");
myQueue.Enqueue("third");
int count = myQueue.Count;
for (int i = 0; i < count; i++)
{

Console.WriteLine(myQueue.Dequeue());
}

The preceding code produces the following output:

- adds an element to the end of the
Queue

- removes the oldest element from the Queue

17

SortedList

SortedList mySortedList = new SortedList();
mySortedList.Add(3, "three");
mySortedList.Add(2, "second");
mySortedList.Add(1, "first");
foreach (DictionaryEntry item in mySortedList)

{ Console.WriteLine(item.Value); }

The preceding code produces the following output:

A SortedList is a collection that contains key\value pairs but it is different

from a Hashtable because it can be referenced by the key or the index and

because it is sorted. The elements in the SortedList are sorted by the

IComparable implementation of the key or the IComparer implementation

when the SortedList is created. The following code creates a SortedList, adds

three elements to the list, and then prints the elements to the Output window:

first
second
third

18

A Stack collection is a last-in-first-out collection. It is similar to a

Queue except that the last element added is the first element retrieved. To

add an element to the stack, you use the Push method. To remove an

element from the stack, you use the Pop method.

The following code creates a Stack object, adds three elements, and

then removes each element and prints the value to the Output window:

Stack

Stack myStack = new Stack();
myStack.Push("first");
myStack.Push("second");
myStack.Push("third");
count = myStack.Count;
for (int i = 0; i < count; i++)
{ Console.WriteLine(myStack.Pop()); }

The preceding code produces the following output:

third

second

first

19

System.Collections.Generic

The System.Collections.Generic namespace contains

classes that are used when you know the type of data to be

stored in the collection and you want all elements in the

collection to be of the same type. Table 9-5 lists the types in

the System.Collections.Generic namespace. These types are

described in detail in the following sections.

Use Generic Type Whenever Possible

It is considered best practice to use a collection from the

Generic namespace because they provide type-safety along

with performance gains compared to the non-generic

collections.

20

TABLE 4: System Collections Generic

System.Collections.Generic

COLLECTION

NAME

DESCRIPTION

Dictionary<TKey,

TValue>

Creates a collection of key\value pairs that are of the

same type

List<T> Creates a collection of objects that are all the same

type

Queue<T> Creates a first-in-first-out collection for objects that

are all the same type

SortedList<TKey,

TValue>

Creates a collection of key\value pairs that are sorted

based on the key and must be of the same type

Stack<T> Creates a collection of last-in-first-out object that are

all of the same type

21

Dictionary

A Dictionary type enables you to store a set of elements

and associate a key for each element. The key, instead of an

index, is used to retrieve the element from the dictionary. This

can be useful when you want to store data that comes from a

table that has an Id column. You can create an object that

holds the data and use the record’s Id as the key.

22

static void Sample2()

{

Dictionary<int, MyRecord1> myDictionary = new Dictionary<int,

MyRecord1>();

myDictionary.Add(5, new MyRecord1() { ID = 5, FirstName = "Bob",

LastName = "Smith" });

myDictionary.Add(2, new MyRecord1() { ID = 2, FirstName = "Jane",

LastName = "Doe" });

myDictionary.Add(10, new MyRecord1() { ID = 10, FirstName = "Bill",

LastName = "Jones" });

Console.WriteLine(myDictionary[5].FirstName);

Console.WriteLine(myDictionary[2].FirstName);

Console.WriteLine(myDictionary[10].FirstName);

}

Dictionary

The preceding code will write "Bob", "Jane", and "Bill" to the Output

window.

23

If you want to know how many elements are in the Dictionary object,

you use the Count property,

Dictionary

TABLE 5: Common System Collections Generic Dictionary Methods

METHOD DESCRIPTION

Add Adds a key and value to the dictionary

Clear Removes all the keys and values in the
dictionary

ContainsKey Returns true if the dictionary contains the
specified key

ContainsValue Returns true if the dictionary contains the
specified value

Remove Removes the element with the specified key

24

A List class is a strongly typed collection of objects. It is similar to an

ArrayList except all elements of the List must be of the same type. It is

different from a Dictionary because there is no Key, and elements are

referenced by index. When you declare the List object, you specify the

type of elements it can contain.

List

List<int> myList = new List<int>();

When you add elements to the list, they must be of that type,

or you get an error. The preceding code created a List object that

can contain only int values.

myList.Add(1);
myList.Add(2);
myList.Add(3);

25

Summary

Which type of collection class to use based on a specific

set of requirements?

Remember the following points:

1. Generic collections are used when you have the same

type for all elements.

2. Lists and ArrayLists are referenced by index and do

not have a key.

3. Dictionaries, SortedLists, and Hashtables have a

key\value pair.

4. Queues and Stacks are used when you have a specific

order of processing.

26

Summary

• The .NET Framework offers both generic (строгие коллекции)

and nongeneric collections (нестрогие коллекции). When

possible, you should use the generic version.

• Array is the most basic type to store a number of items. It has a

fixed size.

• List is a collection that can grow when needed. It’s the most-used

collection.

• Dictionary stores and accesses items using key/value pairs.

• HashSet stores unique items and offers set operations that can be

used on them.

• A Queue is a first-in, first-out (FIFO) collection.

• A Stack is a first-in, last-out (FILO) collection.

• You can create a custom collection by inheriting from a collection

class or inheriting from one of the collection interfaces.

27

